Hydrogeologic Framework, Groundwater Movement, and Water Budget of the Kitsap Peninsula, West-Central Washington

The USGS has released a study of Kitsap Ground water. They are working on a  computer model that may be able to predict  whether residents will have adequate water supplies in coming years, and suggest strategies to maintain adequate water resources.  Ground water is important since water is not imported to the region. 85 percent of the county are on interconnected water systems, only 15 percent ate on wells. Kitsap County PUD strategies may involve identifying the Ground water recharge regions, estimation of water quantities and flow, and developing regional distribution methods; such as protecting critical recharge regions,  limiting growth in water poor regions, and pumping water from water rich regions to water poor regions.

Kitsap water studyThis report presents information used to characterize the groundwater-flow system on the Kitsap Peninsula, and includes descriptions of the geology and hydrogeologic framework, groundwater recharge and discharge, groundwater levels and flow directions, seasonal groundwater-level fluctuations, interactions between aquifers and the surface‑water system, and a water budget. The Kitsap Peninsula is in the Puget Sound lowland of west-central Washington, is bounded by Puget Sound on the east and by Hood Canal on the west, and covers an area of about 575 square miles. The peninsula encompasses all of Kitsap County, the part of Mason County north of Hood Canal, and part of Pierce County west of Puget Sound. The peninsula is surrounded by saltwater and the hydrologic setting is similar to that of an island. The study area is underlain by a thick sequence of unconsolidated glacial and interglacial deposits that overlie sedimentary and volcanic bedrock units that crop out in the central part of the study area. Geologic units were grouped into 12 hydrogeologic units consisting of aquifers, confining units, and an underlying bedrock unit. A surficial hydrogeologic unit map was developed and used with well information from 2,116 drillers’ logs to construct 6 hydrogeologic sections and unit extent and thickness maps.

Unconsolidated aquifers typically consist of moderately to well-sorted alluvial and glacial outwash deposits of sand, gravel, and cobbles, with minor lenses of silt and clay. These units often are discontinuous or isolated bodies and are of highly variable thickness. Unconfined conditions occur in areas where aquifer units are at land surface; however, much of the study area is mantled by glacial till, and confined aquifer conditions are common. Groundwater in the unconsolidated aquifers generally flows radially off the peninsula in the direction of Puget Sound and Hood Canal. These generalized flow patterns likely are complicated by the presence of low-permeability confining units that separate discontinuous bodies of aquifer material and act as local groundwater-flow barriers.

Groundwater-level fluctuations observed during the monitoring period (2011–12) in wells completed in unconsolidated hydrogeologic units indicated seasonal variations ranging from 1 to about 20 feet. The largest fluctuation of 33 feet occurred in a well that was completed in the bedrock unit. Streamgage discharge measurements made during 2012 indicate that groundwater discharge to creeks in the area ranged from about 0.41 to 33.3 cubic feet per second.

During 2012, which was an above-average year of precipitation, the groundwater system received an average of about 664,610 acre-feet of recharge from precipitation and 22,122 acre-feet of recharge from return flows. Most of this annual recharge (66 percent) discharged to streams, and only about 4 percent was withdrawn from wells. The remaining groundwater recharge (30 percent) left the groundwater system as discharge to Hood Canal and Puget Sound.

USGS Report By Wendy B. Welch, Lonna M. Frans, and Theresa D. Olsen



Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s